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CONTROLLABILITY AND STABILIZABILITY OF
REGJLAR SINGJLAR LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS

by

C. E. Langenhop

Abstract. A concept of controllability for systems

Ax + Bx = Cu(t) in which A may be singular is introduced.
When det(As+B) 2! 0, s € C}m this is shown to be equivalent

to the condition that c!(As+B) " lc = 0 implies c = 0. It

is also shown that when such a system is controllable and C

is a column vector, then there exists a feedback u = ggx + g{i

such that A - Cg{ is non-singular and all solutions of

Ax + Bx = C(ggx+g{k) decay exponentially.
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1. Introduction

We consider systems of the form

(1.1) Ax + Bx = Cu (x

where x and u are R"- and R™-valued functions, respec-
tively, of t € R and where the constant matrices A and

B are nxn and C is n x :a and all have real elements.

We shall say the system is singular when A is singular and
regular when

(1.2) A(s) = det(As+B) # 0, s €R (or C).

Condition (1.2) is the criterion for the pencil of matrices
{As+B} to be regular in the terminology of [2], p.25.

Our results for regular singular systems (1.1) reduce to well-
known facts for the case when A is non-singular. Regular singular

systems of the form

(1.3) Ax + Bx = f(t)

have been treated elsewhere [1]) where a formula for the solutions
of (1.3) is given. We give an alternative development and an
equivalent formula in §2. A more detailed exposition is in [3].

It is known and will become evident in §2 that when a solution

of (1.1) or (1.3) exists for given initial conditions, then the
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solution is unique. When f in (1.3) or u in (1.1) is con-
tinuous on an interval _#, then.a solution x on 7 will be
understood to be a function which is differentiable on # and
which satisfies the equation everywhere on _#Z. Thus, in treating
the concept of controllability in regard to (1.1), we restrict
the controls u to the class of continuous IR™-valued functions
and require differentiability of the corresponding responses x.
We shall see that when control can be effected, the function u

can, in fact, be chosen in a class

(1.4) <2u = {u:[to,w) +]Rm:u(k) is continuous, k=0,1,...,u}
for some yu > 0.

Definition 1.1.

System (1.1) is controllable (at time to) if for every

£,C €]Rn, there is a u € @@ and a 1 > 0 such that there is
a solution x of (1.1) satisfying x(to) = ¢ and X(t0+T) = £,

it is controllable from zero if the same is true with the restric-

tion £ = 0.

Remark 1.2.
It should be clear that (1.1) is controllable at time ty
if and only if it is controllable at time O0. Since A and B

are constant, one need only translate the control which effects
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the transfer from £ to . Accordingly, unless otherwise noted, we
take ty = 0 in (1.4) and Definition 1.1,

Our main result, proved in §3, is the following.

Theorem 1.3.

Let (1.1) be regular. Then (1.1) is controllable if and only

if

(1.5) ¢ €Rr™, cT(as+B) I

0, s €I, implies c = 0.

Moreover, when (1.1) is controllable, we may take 1 > 0 -

arbitrarily, regardless of ¢,z.

Remark 1.4.

If the coefficient matrices A,B,C have elements in €, the complex
numbers, then our results are valid also in the corresponding
context; that is, we may replace R and R™ in (1.4), Definition
1.1 and (1.5) by €" and €™, respectively, with x being
€"-valued. It will be clear that our proofs remain valid in this 1
context when appropriate trivial modifications are made. It should
be noted that (As+B)'1 is not generally defined for all s € R
(or C). However, when (1.2) holds, the elements of (As+B)'1 are
rational functions of s and (1.5) is to be interpreted to mean

that the elements of cT(As+B)'1C are each the zero function at

points s where they are defined. Note that it is irrelevant




whether s 1s interpreted as a variable over IR or over C.

Remark 1.5.

Singularity of A is not an hypothesis in Theorem 1.3.

When A is non-singular it is easy to show by expanding (As+B)’

in powers of s'1 for large s that (1.5) is equivalent to the

condition

n-1 _ I | o _a-l
rank[Bl,AlBl,...,A1 B1] =n, By =A c, Al = -A "B.

This is the well-known condition (Theorem 5, p.81, [5]) for

controllability of the system X = Alx + Byu equivalent to (1.1)

when A°l exists.

In §4 we prove a stabilizability result for (1.1). It is

convenient to use the following.

Definition 1.6.

System (1.1) is stabilizable if there exist real m x n

matrices GO and G1 such that with

(1.6) u = Gyx + Gyx

in (1.1) the resulting system
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B - CG

(1.7) Ax + Bx =0, A=A-CG, B

0’

~

has A non-singular and all solutions tend to zero exponentially
as t - +o, or, equivalently, det(As+B) has degree n and
all its zeros have negative real.parts.

The main result in §4 is Théorem 4.1 which states that if
{1.1) is regular and controllable and m = 1, then (1.1) is
stabilizable. Corollary 4.2 affirms the analogous result for

certain cases with m > 1. We intend to treat the general case

m>1 at a later time.

2. Decomposition of the system,

Throughout this section we assume A 1is singular and we
sketch briefly an analysis leading to an explicit formula for
the solutions of (1.1) in this case. Additional details can be
found in [3]. Condition (1.2) implies the existence of a Laurent
expansion for (A+zB)'1 in a deleted neighborhood of zero; that ;
is,

(2.1) (A+zB) L= 1 2K, zec, 0<|z] < ;
k=-qu

for some & > 0. Here Q_u# 0, uw>1 since A is singular and
the n x n matrices Qk have real elements when A and B do.
(Many of the relations which follow appear in [4] but derived

from a different point of view. It should be noted that we used

-+ et < 22 e J




uw+ 1 there in place of u here.)

From (2.1) it readily follows that

QA = -Q_ 1B, AQ = -BQy_ g k#0
(2.2)

QA *Q4 B =TIy » AQ + BQ, = I

where In denotes the n X n identity matrix. One may now

show that
(2.3) AQB = BQA, k> -u,
and that
0 , k<-1,3 >0
QkAQj = QjAQk = Qk+j’ k>0, j>0
'Qk+j’ k <-1, j <-1.

From these, (2.2) and (2.3) it follows that
(z.4) QOAQO =Q » QBQ; =0Q4

and since Q_1 # 0, that

(2.5) (Q,M" =0, @, M* ! #o.




If we define
(2.6) Py = QpA, Py = Q_;B,

then from (2.2) and (2.5) we see‘that P0 and P1

plementary projections;

(2.7) PS = p

are com-

If we let 1 = rank Py, then r <n since A is assumed to be

singular. For convenience we assume v > 0; the case r = 0 1is

included in what follows if one omits various terms

vacuous, in effect, in that case. In a similar way

r = n (A non-singular) is included in what follows.

we define p = n - r and consider that

(2.8) r >0, p=n-r1>0,

Now let X be nxr and Y be n x p with

of X and Y forming bases for the ranges (column

(]

(2.9) T = [X,Y]

which are
the case

Accordingly,

the columns

spaces) of

and Pl, respectively. By (2.7) the n x n matrix




is non-singular and we define r x n and p x n matrices U

and V, respectively, by

U
(2.10) -1 [_ J.
v

The following relations then hold:

(2.11) UX = 1, UY =0, VX =0, V¥ =1,XU+YV=I

Since POX =X and P,Y =Y relations (2.11) imply
(2.12) P, = XU

(2.13) Up, = U, UP, =0, VP, =0, VP, =V,

Below we shall need the r x r matrix g and p x p matrix

o defined by

(2.14) B = -UQOBX s a = -VQ_;AY.

Using (2.3) and (2.4), one finds that YaqV = ~Q_1A and (2.5)

then implies

(2.15) =0 , o*lgo.




We shall also need the n x n matrix

uQ,
(2.16) S =
vQ_4

Observe that [AX,BY]S = APOQO + BPlQ_1 = In by (2.12), (2.4)
and (2.2). Hence
-1

(2.17) S © = [AX,BY].

Lemma 2.1.
Let (1.1) be regular and suppose (2.8) holds. Then (1.1) is

equivalent to

(2.18,) Xo - Bxy = Tyu

(2.181) Xl - axl = Flu

where
Xp

(2.19) X =T = Xxq * Yx;, X, € RY, x; € RP
X
1

and

(2.20) Iy = UQ,C , Ty =VvQ,C.
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Proof:
Let
. |fo 1
(2.21) X = = T *x
X1
so that
(2.22) Xg = Ux, Xy = Vx.

Using the substitution (2.19), we see that (1.1) is equivalent to

(2.23) (SAT)x + (SBT)x = SCu.

Computing the submatrices comprising SAT we find

UQyAX = I, UQyAY = 0, VQ_;AX = 0, VQ_,AY = -a

by virtue of (2.3), (2.11), (2.12), (2.13) and (2.14). Simila:

computations give the submatrices comprising SBT and we have

(2.24) SAT = , SBT =
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It is now evident that (1.1) is cquivalent to (2.lsi), i= 0,1,

by virvtue of (2.21) and (2.20). (1]

Lemma 2.2,
Let Xy be a solution of (J.ISI) on an interval #  with

u continuous on £ 1{ we defline

then Wy exists on # and

EENIES SN S X -
(2.20) Wigp T @ llu oWy, k= 0,...,n-1.
EBach Wi k= 0,1,...,0 is uniquely determined by v and it u
is j - 1 times differentiable on  #,  then
I Y

(2.27) w, = ) ol J+ku(k), = l,e..,u

Fk=0 |

]
Proof:
By (2.25) Qk = a“_kil exists on F and by (2.181) we have,
for 0 <k <yp -1,
IR TN S0 R
Wi (t (axl+llu)
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which, in effect, is (2.26). Since wy = auxl = 0 by (2.15) we
see that Wy is uniquely determined by u. The same follows in-

ductively for Wiseoo W by (2.26). With k =0 in (2.26) we

u
have wy = au_lrlu which is (2.27) for j = 1. An inductive
proof using (2.26) then establishes (2.27) for any j, 1 < j <y,

when u is j - 1 times differentiable. [#]

Remark 2.3.

Taking k = p in (2.25), we see that the previous lemma
implies that X = wu is a formula for the solution of (2.181)
when u is continuous. For example, if pu = 3 one gets from

(2.26) and the fact that Wy = 0, that
= - d d 2
Xy = Wg = Flu + Hf(aFIU+Hfa Flu)

with no implication that u and u exist. When u is -1
times differentiable on _#, then (2.27) with j = u gives the
easily written formula

-1
(2.28) x, (t) = g okru®(ry, ter.

In any case, with u continuous on _# the solution of (2.180)

with xO(O) given is




13,
Bt b o-B(t-s)
(2.29) xo(t) = e xO(O) + IO e FOu(s)ds.

Observe that whereas xO(O) can be chosen arbitrarily and in-
dependently of u, the value of XI(O) is determined by u.
Formulas (2.28) and (2.29) are equivalent to equation (19), p.419,

in [1].

3. Controllability of the system.

Controllability for (1.1) clearly implies that (2.180) and
(2.181) are each controllable. Whereas criteria for controllability
of (2.180) are well-known, this seems not to be the case for (2.181).

In connection with the latter the following is important.

Lemma 3.1. Let x be a solution of (2.181) on an interval 7

1
where u 1is continuous. If Cl E]RD satisfies

(3.1) cja’r; =0, k =0,...,u-1,
then
(3.2) chl(t) = 0 on 7.
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Proof:
When u is u - 1 times differentiable, this follows
immediately from (2.28). If u 1is merely continuous, then (3.2)
follows from (3.1) by an induction argument employing (2.26) in-

as much as wy = 0 and W= Xg. [#

Theorem 3.2.

Let (1.1) be regular. In order that it be controllable it

is necessary that

(3.3) rank HO =r, rank “1 = p
where
(3.4) Hy = [Ty,8T,,...,87"1r u-1p

ols Hy = [Ty,afy,...,a" 000,

Proof:
It was pointed out above that if (1.1) is controllable, then
both (2.180) and (2.181) are controllable. We must then have

rank HO = r. The condition rank ”1 = p follows from Lerma 3.1. Indeed if

rank H1 < p then there is a <y €]Rr, 1 # 0 such that clH1 = 0.

But then by (3.2) we have c{xl(r) = 0 so there can be no control
u G‘%O transferring x from x(0) = 0 to x(tr) = Yc; for 71 >
inasmuch as then X (1) = ¢y (cf. (2.19) and (2.21)) for which

c{xl(r) £ 0. A

0




Theorem 3.3.

Let (1.1) be regular. Then it is controllable from zero if
and only if (3.3) holds. Moreover, when (3.3) holds, then
T >0 in Definition 1.1 can be chosen arbitrarily and one can

choose u € ﬁku(t0=0) such that.

(3.5) w(0) = u'(0) = --- = ulM(oy = 0
so that

(3.6) x(0) = 0 when x(0) = 0.
Proof:

The proof given for Theorem 3.2 suffices to show that (3.3)
is necessary for (1.1) to be controllable from zero. To prove
that (3.3) is sufficient we restrict ourselves to controls

u € @&l defined by

t
(3.7) u(t) = J (t-s)uv(s)ds, t>0
0
where Vv € Q@(t0=0). For such u we have
t
.80 u®) = w, f (t-s)" Kv(syas, k =0,1,...,u
0

where (u)k = u!/(u-k)! so that (3.5) holds.

15.




For a solution of the equivalent system (2.18i), i-=

we then necessarily have il(O) = x1(0) = 0 by (2.28). When

x(0) = 0, then xO(O) = Ux(0) = 0 so by (2.29) and (3.7) we

have
t .

(3.9) xO(t) = J KO(t-s)rov(s)ds, t >0
0

where
b B(t-0) m

(3.10) Ky (t) = [ eB(t-0) Mgy ¢ 5 0.
0

Observe that then iO(O) = 0. Hence for controls as in (3.7) we

have (3.6).

Substituting (3.8) into (2.28), we may write

t
(3.11) xl(t) = fo Kl(t-s)rlv(s)ds, t >0
where
(3.12) K () = [ (et Kak,

Combining (3.9) and (3.11) and using (2.19), we have

t
(3.13) x(t) =T [0 K(t-s)rv(s)ds
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with

Ko(t) o - T

3.14 K(t) = , T
(3.14) 0 K (1) !

1)

We now define a n x n matrix function W by

T
(3.15) W(t) = fo K(t-s)TTTKI (t-s)ds.

It is evident that W(tr) is real symmetric and positive definite or semi-

definite. Moreover, W(t) 1is singular for 1t > 0 if and only

if there is some ¢ E]R“, c # 0, such that

(3.16) cTk()yr=o, 0<t<r.

If W(t) 1is non-singular for some Tt > 0, then for any ¢ € R"

we can define v by

(3.17) vit) = Ik r-t)w ot i, :

With this v in (3.7) the resulting control u €%, satisfies !
(3.5) and, by virtue of (3.13), gives x(t) = ¢ when x(0) =0
as well as i(O) = 0. The theorem will be proved then when we

show that (3.3) implies that W(t) is non-singular for all 1 > 0.
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This is included in the following lemma.
Lemma 3.4.
For any 1 > 0, W(1) defined in (3.15) is non-singular if
and only if (3.3) holds.
Proof:
Let Tt > 0 be given and let ¢ € R" satisfy cTW(r) = 0.

This is equivalent to (3.16) which, in turn, is equivalent to

(3.18) JTx®yr=0 , x=0,1,2,...

inasmuch as K(t) 1is an entire function. From (3.10) one can

compute that

[
K(loq (0) = <l

From (3.12) we get

u!au-k, k=1,...,u ?

(k
k(P c0)

(=]
-
—
’
[}

0 or k >wu+ 1.

Accordingly, if we take cT = [cg, CI] where <o Eer, <y e:m”,

then (3.18) is equivalent to
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g8y =0 , k=0,,2,
(3.19)
c{akrl =0 , k=0,1,...,p1
These in turn are equivalent to
T T
(3.20) COHO =0 |, Cl”l =0

where HO and H1 are defined in (3.4). 1If CTW(T) = 0 and

c # 0, then (3.20) holds with o # 0 or cy # 0 so (3.3) fails.
Conversely, if (3.3) fails, then (3.20) holds for some Cy»Cq not
both zero. The corresponding ¢ # 0 and satisfies cTW(r) = 0.

This proves the lemma and completes the proof of Theorem 3.3. [

Lemma 3.5.

Conditions (1.5), (3.3) and
(3.21) ¢ €R"Y, cT(-as+B)"1c = 0, s € R, implies c = 0,
are all equivalent,

The equivalence of (1.5) and (3.21) is obvious since -s

may be substituted for s in either. To show that (1.5) and (3.3)




are equivalent we use (2.24) to note that

(3.22) S(As+B)T = diag(sIr-B,Ip-sa).

It follows that

T -1 T -1 T -1
(3.23) ¢’ (As+B) "C = c (sI_-B) "T, + cl(Ip-sa) ry

where
T T T -
(3.24) cg = © X, CI = cTY, ¢TI = [cO,c{]T 1
But for large |s|, s € R, we have
(sIr_B)-l = 3 S-k-l Bk
k=0
while for any s € R we have
- uol
(I -sa) 1. ) skoK
\ © k=0

by virtue of (2.15). From (3.23) we see then that cT(As+B)'1C =0,
s €R, 1is equivalent to (3.19) and hence to (3.20). By virtue of
(3.24) it is evident then that (1.5) holds if and only if (3.3)

holds. This completes the proof of the lemma. )




We are now in a position to prove our main result:

Proof of Theorem 1.3:

As was pointed out earlier we may assume A 1is singular
and (2.8) holds. Hence if (1.1) is regular and controllable,
(3.3) must hold by Theorem 3.2 and this implies (1.5) by Lemma
3.5. Now suppose (1.5) holds. Then (3.3) holds so by Theorem
3,3 system (1.1) is controllable from zero with any Tt > 0 and
with u € %m satisfying (3.5) and the resulting solution x
satisfying (3.6). But (1.1) also implies (3.21) by Lemma 3.5

so, by the same argument just given, the system

(3.25) -Ax + Bx = Cu

is controllable from zero with any Tt > 0 and analogous u € Qm
and solution x. Hence, if (1.1) holds and ¢&,¢ €]Rn, T >0 are
given, there is a control u1 € %m steering the corresponding
solution xl of (3.25) from xl(O) =0 to Xl(T/Z) = § and
there is a control u2 EQ% steering the corresponding solution
x%  of (1.1) from xz(O) =0 to xz(T/Z) = ;. The controls ul
and u2 satisfy (3.5) and by (3.6) we have il(O) = 0, iz(O) = 0.

If we define

(ul(/2-t), 0 <t <12
(3.26) uie) = <{ wl(t-1/2), £ > 12,




then u E‘%u. The function x defined by

A

t < 1/2

{ der/z-t) 0
(3.27) x(t) =
t/2

(t-t/2) t

| v

is continuous and differentiable for t >0 (even at t = 1/2)
and is a solution of (1.1) with u given by (3.26) which satisfies

x(0) = & and x(t) = t. This completes the proof. #

4. Stabilizability of the system.

When (1.1) is regular, the solutions of the homogeneous

system

(4.1) AXx + Bx = 0

can be found by setting u(t) = 0 in (2.28) and (2.29). One gets

0, and by (2.19), we find the solutions

1

xo(t) = Bt (0), x(t)
of (4.1) in the form

Bt r
xePtey , gy €RT.

(4.2) x(t)

Thus the initial values are restricted to the range of Py by

(4.3) x(0) = XEO




_ﬂ——-—'—
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inasmuch as the columns of X are a basis for the range of Py
By (2.15) we have det(Ip-sd) =1 so from (3.22) we see

that the eigenvalues of £ are precisely those X for which

A(X) = 0 (cf. (1.2)). The polynomial A is of degree r and

the solutions (4.2) form an r-dimensional space over 1R. If all

eigenvalues X have negative reél parts, then the zero solution
of (4.1) is asymptotically stable relative to the allowable
initial values x(0) given in (4.3). However, a bounded input

u in the system (1.1) need not result in a bounded response X.
Indeed, if r <n, u >2 and u € @h, we see from (2.28) that
then Xy and hence x may be unbounded when u(“'l) is un-
bounded.

In regard to (1.1) we ask then; what conditions assure that
the system can be stabilized by a linear feedback control so that
the zero solution of the combined system plus feedback is
asymptotically stable relative to arbitrary initial conditions
in the state space R"™? It should be clear that when r <n, a
feedback u = Gx with G being n x m will not suffice. The
combined system is then Ax + (B-CG)x = 0 and the degree of
det (As+B-CG) will still be less than n since A 1is singular.
The corresponding solutions and allowable initial conditions will
be constrained to lie in a proper subspace of R". To achieve
stabilization when A 1is singular the feedback must contain a
term involving x. Thus we ask for conditions which assure
stabilizability in the sense of Definition 1.6. Our principal

result in this direction is the following thcorem.




Theorem 4.1.

Suppose the system (1.1) is regular and that C

(m = 1).
Proof:

As before, we treat (1.1) in
i = 0,1, wunder the assumption (2

and r = n (A non-singular) are

terms are omitted. By hypothesis

holds by Theorem 1.3 and hence (3.

PO is r *x1 {(m=1), then

It follows (Theorem 7, p.90,

Hy
[51)

.8); the extreme cases

24.

is n x 1

If (1.1) is controllable, then it 1is stabilizable.

the decomposed form (2.181),

r =0
included thereby when vacuous
(1.1) is controllable, so (1.5)
3) holds by Lemma 3.5. Since
is r x r and non-singular.

that there exists a non-singular

T X T matrix Eq such that if

(4.4) Yo = FoXq

then (2.180) is equivalent to

(4.5) &O - M(B)y, = e u

where er is the rth column of Ir and M(B) 1is a companion

matrix for the characteristic polynomial of B8; specifically,




R
o0 1 o0 ... o
0 0 | )
(4.0) MUR) - . . .
il 0 0 . 1
Ll\u hl l): .. l\‘. {
\ L WL ~ . N o '. !."l .....
where xhl(,\lr Yy \ hr l"\ h“.
The matrix lll in (3.0) is  p N oso we must have p o~ op
since rank II‘ Top. o Since a0 is o poNy poand satisties (01N
we must have n ~op. Hence pos pooand IIl is square and non

singular,  There is then a non-singular  p N~ p omatrix I-" such

that if

(1.7) Yi 7 Ky

then (J.I.‘%‘) is cquivalent to

{1.%) —M(n))"l ry, T e

where vp is the n”' column of I“ and  M{a)  a companion
mitrix for the characteristic polynomial ot  «a) specitfically,
M{a)} is ol the same form as  M(RY  in (1.06) except that the last

row is zervo, Letting
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(4.9) y =

and combining (4.5) and (4.8), we have the system

I 0 -M[B) O e
(4.10) + ‘

y
0 - M(a) 0 I e,

which is equivalent to (1.1) under the hypotheses of the theorem.
It is convenient now to replace (4.10) by the system equiva-

lent to it obtained by subtracting the last equation of the system

from the rth equation. Since the last row of M(a) 1is zero, this

is

1 o 7| . “M(8) - D
(4.11) r v + 0 y - u

- M
0 M(a) 0 1 e,

where D0 is r x p and all its elements are zero except for a
th th

one in the r Tow and o column.
Next let e; = [1,0,...,0] be 1 x p and replace u in
(4.11) by
T.
(4.12) u=ejy; - v.

The result may be written, after changing signs in the last o
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equations of the system, in the form
I 0 ‘ M(B) D, 0
(4.13) T y - y = V.
0 M(a) + e, 0 Ip eQ-
We now define two permutation matrices ™ and LRI is

p x p and reverses the order of the columns of a matrix (of o

columns) when used as a postfactor; ™ is p ¥ p and reverses

the order of the first p - 1 rows and leaves the last row un-

affected when used as a prefactor on a matrix with p rows. Note
2 2

that Ty = 7] <= Ip. In (4.13) we make the substitution

(4.14) y = @iag(lr,no)]z

and multiply the result by the matrix diag(Ir,nl). Since

= Ty _ . .
wlep = e, and nl(M(a)+epe1) = Ip, the resulting equivalent

system takes the form

(4.15) z =f7 + bv
where
0
M(B) D7 :
(4.16) - 001, bef:lenrn
0 ™™o 1
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Note that all elements of DO"O are zero except for a one

th th

in the r row and first column.. Also, the element in the i

row and i + column of =« =1,...,p-1, 1is a one and all others

th

1"0° i
are zeros except for a one in the p row and first column.

Hence, from the form of M(B) in (4.6), we see that o/ has ones
just above the main diagonal and all zeroes everywhere above these.

It is then clear from the form of b in (4.16) that

(4.17) H= [bah,... " 1b]

is non-singular. Hence there exists a feedback (Theorem 9, p.97,

(1)

_ T n
(4.18) v=g1z , ge€EeR
which when substituted into (4.15) gives the system

C T

(4.19) z = (aftbg )z
with o+ bg' stable; that is, g can be chosen so that all
eigenvalues of ¥ + bgT have negative real parts and all solutions
of (4.19) tend to zero exponentially as t -+ +=,

The substitutions (4.4) and (4.7) can be written as

(4.20) y = [diag(Fy,F)1T 'x
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: and (4.14) can be written
f
f (4.21) z = [diag(I_,m;) ]y
since ﬂg = Ip. The combined feedback resulting from (4.12) and

(4.18) is thus of the form
(4.22) u=ey, - gz = oggx + gk
for some 80181 € R"; specifically,

F, U
(4.23) gg = -gT 0 ; g} = e{FIV.

Using (4.20) and (4.21), we can express (4.19) in terms of x.
The resulting equation, when multiplied by the inverses (in reverse
order) of the several matrices used, in effect, as prefactors in

going from (1.1) to (4.19), will produce the form (1.7) with
T G T

G0 = gg» G; = g73 that is, (1.7) with
(4.24) A=A-Cg , B=B-Cg.

Ini in (4.19) so R must

be non-singular and all solutions x(t) of (1.7) tend to :zero

The term Ax arises from the term =z
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exponentially as t + « since all solutions z(t) of (4.19)

do so. This completes the proof of the theorem. [#]

In the above, C was assumed to be n x 1. We can use this
to prove the stabilizability of (1.1) for some cases when C is

nxm with m>1.

Corollary 4.2. E

Suppose the system (1.1) is regular, that rank A =n -1 i

H
and that the zeros of A(s) = det(As+B) are distinct and none is J

zero. If (1.1) is controllable, then it is stabilizable. |

Proof:
Since rank A =n - 1, A 1is singular so the polynomial
A(s) has degree r < n. (A(s) # 0 since (1.1) is regular.) We

may write

(4.25) A(s) = dosr+---+d

the condition dr # 0 being a result of the hypotehsis that
A(0) # 0. From (4.25) we find (z € C)

det (A+zB) = z"A(1/2) = zn'r(drzr+...+d0).

The cofactor of at least one element in A + zB is non-zero

at z = 0 since rank A =n - 1. Hence since d0 £ 0
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lim zn'r(A+zB)_1
z-+0

exists and is non-zero so (A+zB)'1 has a pole of order n - r
at z = 0. Thias 1y in (2.1) satisfies p =n - r = p. Since
r <n, we have p > 0 and, again for notational convenience
only, we assume r > 0 so that (2.8) holds.

Now let

B 0
(4.26) E =
-

where B and a are defined in (2.14) as in the development in

§2. Consider

(4.27) H = [I,ET,...,E""1r)
where T is as in (3.14). Since 3 = p and o = 0, we find
P P
H0 B8 H0
H =
Hy 0

~ -1 .
where H0 = [FO,BFO,...,Bp FO] and Ho and Hl are as in
(3.4). But the eigenvalues of B are the zeros of A(s) so our

hypotehses imply that B is non-singular. The controllability

et it A
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of (1.1) implies (3.3) by virtue of Theorem 1.3 and Lemma 3.5.
It follows then that rank H = n.

Since uw =p and o 1is p x p and nilpotent of order
v, the Jordan canonical form for o is M(a) as described
just after (4.8). Any Jordan form for 8 1is matrix diagonal
with distinct diagonal elements and none zero by virtue of our
hypothesis regarding the zeros of A(s). Hence in any Jordan
form for E no two Jordan blocks have the same eigenvalue. It
follows then from Theorem 6, p. 86 of [5] that there exists a

¢ € R™ such that

H = [T,ET,...,E®r], 1= rc
has rank n. This in turn implies
(4.28) rank H0 =r, rank H1 = p

-~

where HO and H1 are as in (3.4) with FO and ™ replaced
by Foc and Flc, respectively.
Again using Lemma 3.5 and Theorem 1.3, we may now conclude

that

~ o~

(4.29) AX + Bx =Cu , C=2Cc, ucemRl

-

is controllable. Since now C is n x 1, Theorem 4.1 implies
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that (4.29) is stabilizable. But (4.29) is (1.1) with u = cu
and the stabilizing feedback u = ggx + g{i for (4.29) determines

. T 4 _ T
a stabilizing feedback (1.6) for (1.1) with G, = cg,, G, = cgl.[g

It may be noted that the hypotheses in Corollary 4.2 do not

imply r =n - 1. The following is a case in which r <n - 1.

i 1 0 0 1 0]
A=1]0o 1 o] , B=1|o o 1
0 0 O 1 0 ©

= 2 =n -1 but A(s) =

Here rank A s + 1 has degree 1 < n - 1,
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